

Dietary Microplastics: Exposure Pathways, Hotspots, and Organ-Specific Health Effects

¹Agita Diora Fitri, ²M. Ramadhandie Odiesta, ³Tan Malaka, ⁴Indri Seta Septadina, ⁵Mariana

^{1,3,5} Department of Public Health sciences and community medicine, Faculty of Medicine, Sriwijaya University, Indonesia

^{2,4} Department of Anatomy, Faculty of Medicine, Sriwijaya University, Indonesia

Email: agita@fk.unsri.ac.id

KEY WORDS

*microplastics;
dietary exposure;
tea bags;
disposable cups;
liver toxicity;
kidney toxicity;
endocrine disruption.*

A B S T R A C T

Microplastics (MPs) and nanoplastics (NPs) are pervasive environmental contaminants that increasingly infiltrate the human food chain, making dietary intake a continuous and unavoidable route of exposure. However, the integration of food-chain sources, exposure hotspots, biological absorption, and organ-specific health effects remains fragmented across the literature. This umbrella review synthesizes recent review-level evidence published between 2022 and 2025, focusing on farm-to-fork pathways of dietary microplastics, high-risk food contact materials—particularly tea bags and disposable cups—and mechanistic links to human health outcomes. Evidence indicates that microplastics originate from environmental contamination, food processing, packaging, and consumer-stage practices, with hot beverages representing a major but under-recognized exposure hotspot. Following ingestion, microplastics interact with the gastrointestinal tract, disrupt barrier integrity, and translocate systemically, accumulating in target organs including the liver, kidneys, endocrine organs, and reproductive tissues. Mechanistic pathways consistently involve oxidative stress, inflammatory signaling, endoplasmic reticulum stress, and endocrine disruption, often exacerbated by plastic-derived chemical additives. Despite growing concern, substantial methodological heterogeneity in detection and reporting limits quantitative risk assessment. Overall, dietary microplastics should be regarded as a multi-organ toxicological concern, underscoring the urgent need for standardized analytical frameworks and regulatory attention to food-contact materials and hot beverage consumption practices.

1. Introduction

Microplastics (MPs), defined as plastic particles smaller than 5 mm, and nanoplastics (NPs), typically below 1 μm , have emerged as ubiquitous contaminants across environmental and biological systems (Eze et al., 2024; Kadac-Czapska et al., 2024). While inhalation and dermal contact contribute to human exposure, dietary intake is increasingly recognized as a dominant and chronic exposure route due to the continuous consumption of contaminated foods and beverages (Shukla et al., 2024; Udovicki et al., 2022).

Microplastics enter the human diet through interconnected farm-to-fork pathways, beginning with plastic production and environmental leakage, followed by fragmentation and dispersion in terrestrial, aquatic, and atmospheric compartments (Jayasinghe et al., 2023; McHale & Sheehan, 2024). These particles are transferred through aquatic and terrestrial food chains, accumulating in seafood, crops, livestock, and processed food products (Jadhav & Medyńska-Juraszek, 2024; Unuofin & Igwaran, 2023). In parallel, food processing, packaging, and storage have emerged as critical contributors to dietary microplastic contamination, particularly where plastic contact, heat, and mechanical stress occur (Hee et al., 2022).

Recent evidence highlights food-contact materials as major and modifiable sources of exposure, especially in the context of hot beverages. Synthetic tea bags, disposable paper cups with plastic linings, and other single-use containers can release substantial quantities of microplastics and nanoplastics when exposed to hot liquids (Joseph et al., 2023; Mei et al., 2022; Yousefi et al., 2024). These findings challenge the traditional emphasis on seafood as the primary dietary source of microplastics and suggest that everyday consumer practices may significantly shape exposure profiles (Bai et al., 2022; Lam et al., 2024).

Following ingestion, microplastics interact with the gastrointestinal tract, where particle size, shape, and surface chemistry influence absorption and biological behavior (Prata, 2023). Experimental and human-relevant evidence suggests that microplastics can disrupt intestinal barrier integrity, alter gut microbiota composition, and translocate into systemic circulation (Wang et al., 2024; Yin et al., 2022). Accumulation of microplastics has been reported in human tissues, including liver, kidney, placenta, and blood, raising concerns regarding long-term organ-specific toxicity (Horvatits et al., 2022; Vdovchenko & Resmini, 2024).

Mechanistic studies increasingly link microplastic exposure to oxidative stress, inflammatory signalling, endoplasmic reticulum stress, mitochondrial dysfunction, and endocrine disruption, either through particle-driven effects or via associated plastic additives such as phthalates and per- and polyfluoroalkyl substances (PFAS) (Jahedi et al., 2025; Ojo et al., 2025). However, existing reviews often address exposure sources, toxicological mechanisms, or target organs in isolation, limiting integrated risk assessment and policy relevance (Bhavsar et al., 2023; Canga et al., 2024). Therefore, this umbrella review aims to synthesize recent review-level evidence into an integrated framework linking dietary sources, exposure hotspots, absorption pathways, and organ-specific health effects.

2. Methodology

Study design

This study was conducted as an umbrella review (systematic review of reviews), synthesizing narrative reviews, scoping reviews, systematic reviews, and meta-analyses addressing dietary microplastics and human health (Heo et al., 2025; Udovicki et al., 2022).

Eligibility criteria

Eligible publications were published between 2022 and 2025 and addressed at least one of the following domains: (i) microplastics or nanoplastics in foods, beverages, drinking water, or food-contact materials; (ii) food-chain transfer and dietary exposure pathways; or (iii) human health impacts, toxicological mechanisms, or exposure assessment related to dietary intake (Eze et al., 2024; Kadac-Czapska et al., 2024). Studies focusing exclusively on environmental compartments without relevance to food or human exposure were excluded.

Data extraction and synthesis

Data were extracted into predefined domains, including source and product category, food-chain stage, particle characteristics (polymer type, size, morphology), exposure context, and reported health outcomes or mechanisms. Evidence was synthesized narratively and thematically, with emphasis on exposure hotspots, absorption pathways, and organ-specific toxicity (Canga et al., 2024).

Reporting

Study identification, screening, eligibility assessment, and inclusion followed the PRISMA 2020 guidelines. The study selection process is summarized in a PRISMA flow diagram (Figure 1) (Page et al., 2021).

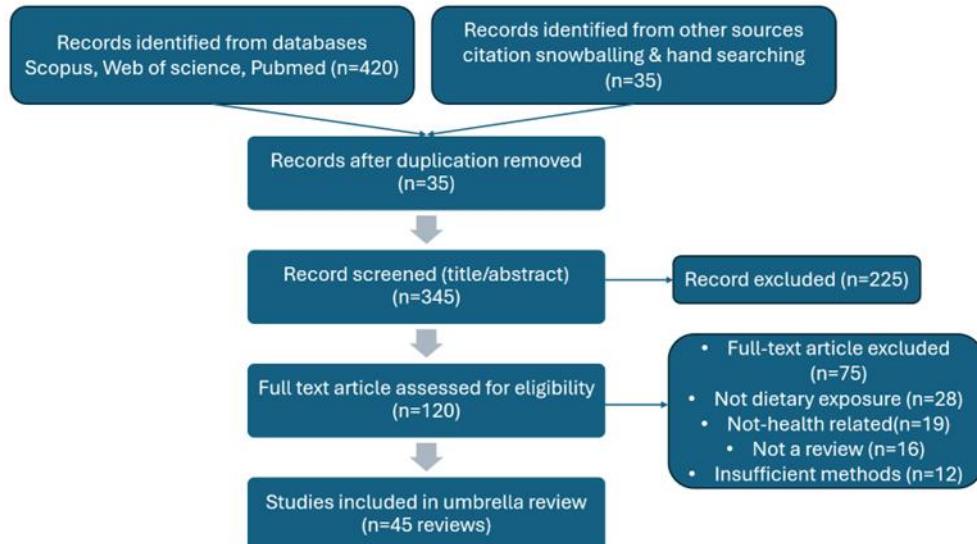


Figure 1. Prisma 2020 Diagram : Umbrella review dietary microplastics and human health (2022-2025)

3. Result and Discussion

Dietary sources and farm-to-fork pathways of microplastics

Dietary microplastics originate from multiple interconnected stages along the farm-to-fork continuum, including upstream plastic production, environmental contamination of soil and aquatic systems, food-chain transfer, processing, packaging, and consumer-stage practices (Eze et al., 2024; Jayasinghe et al., 2023). Aquatic food chains remain a major exposure route due to bioaccumulation and trophic transfer in seafood species (Unuofin & Igwaran, 2023), while terrestrial pathways involve contaminated agricultural soils, irrigation water, and livestock feed (Jadhav & Medyńska-Juraszek, 2024).

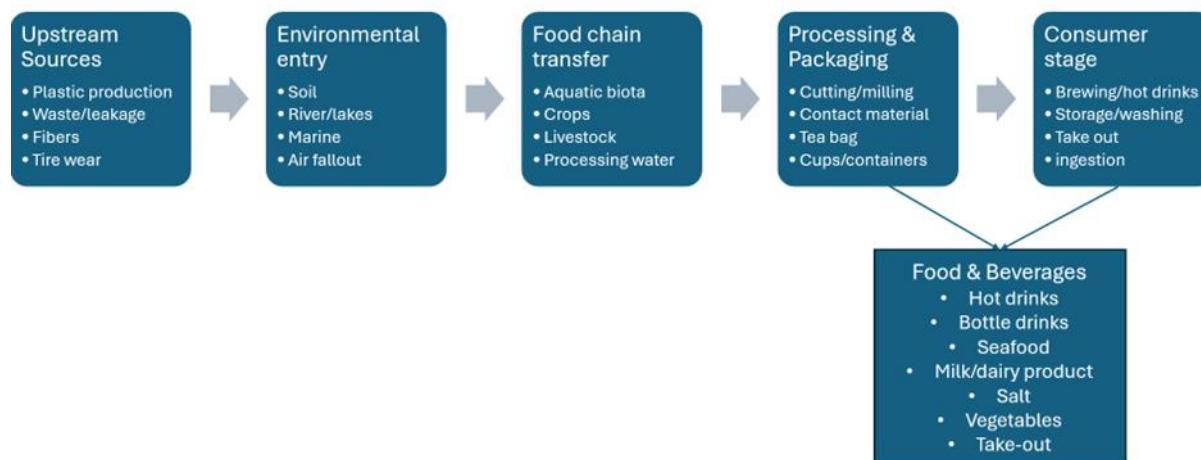


Figure 2. Farm to Fork Pathways of Microplastic Into Food and Beverages

In addition to environmental sources, food processing and packaging represent critical points of microplastic release, particularly under conditions involving heat and mechanical stress (Hee et al., 2022). Hot beverages have emerged as a prominent exposure hotspot, as synthetic tea bags, disposable paper cups, and plastic-lined containers release microplastics and nanoplastics during brewing and consumption (Joseph et al., 2023; Mei et al., 2022; Yousefi et al., 2024). The integrated pathways of dietary microplastic contamination are summarized in Figure 2.

Characteristics of dietary microplastics

Polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) were the most frequently reported polymers in food and beverage matrices, with fibers and irregular fragments dominating particle morphology (Siddiqui et al., 2023; Vitali et al., 2023). Substantial heterogeneity exists in analytical approaches, detection limits, and reporting units, complicating cross-study comparison and exposure estimation (Bhavsar et al., 2023; Canga et al., 2024).

Health impacts and mechanistic pathways

Following ingestion, microplastics interact with the gastrointestinal tract, where particle size and surface properties influence uptake and biological effects (Prata, 2023). Experimental evidence indicates disruption of intestinal barrier integrity, gut microbiota dysbiosis, and translocation into systemic circulation (Wang et al., 2024; Yin et al., 2022). The liver and kidneys consistently emerge as primary target organs, reflecting their roles in detoxification and filtration (Horvatits et al., 2022; La Porta et al., 2023). Mechanistic pathways include oxidative stress, inflammatory signaling, immune cell activation, and endoplasmic reticulum stress, while endocrine and reproductive systems are increasingly implicated through hormone disruption and developmental effects (Inam, 2025; Jahedi et al., 2025; Zhang et al., 2025). A conceptual overview of absorption routes and organ-specific mechanisms is presented in Figure 3.

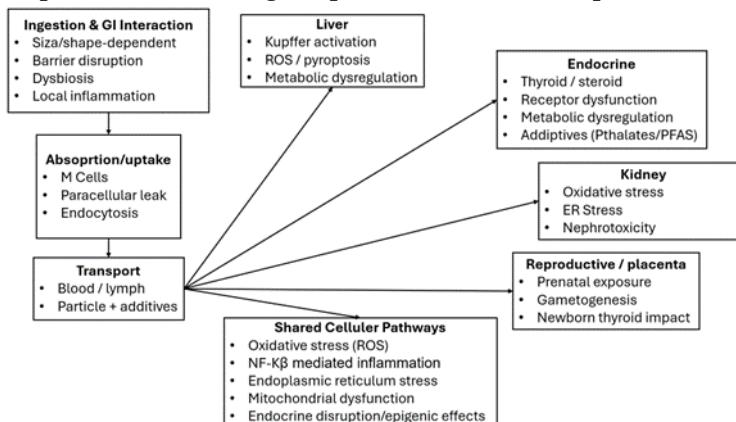


Figure 3. Mechanism of Action (MOA) and Target Organ Impacts of Dietary Microplastics

Discussion

This umbrella review integrates evidence across food-chain pathways, consumer practices, and biological mechanisms, demonstrating that dietary microplastics represent a systemic health concern rather than a localized exposure issue. Identification of hot beverages and disposable food-contact materials as major exposure hotspots expands current understanding beyond traditional seafood-centered paradigms (Joseph et al., 2023; Yousefi et al., 2024). Mechanistic convergence on oxidative stress, inflammation, and endocrine disruption provides biological plausibility for observed organ-specific toxicity, particularly in the liver, kidneys, and reproductive system (Inam, 2025; La Porta et al., 2023; Wang et al., 2024).

Nevertheless, methodological inconsistency in sampling, particle identification, and reporting remains a major limitation, restricting quantitative risk assessment and dose-response analysis (Bhavsar et al., 2023; Canga et al., 2024). Standardized analytical frameworks and regulatory attention to food-contact materials—especially those used with hot liquids—may offer immediate opportunities for exposure reduction while epidemiological evidence continues to develop (Xu et al., 2025).

4. Conclusion

Dietary microplastics and nanoplastics arise from interconnected farm-to-fork pathways, with beverages and disposable food-contact materials representing prominent and modifiable exposure sources. Accumulating evidence supports biologically plausible mechanisms linking ingestion to multi-organ toxicity, underscoring the need for standardized risk assessment and regulatory oversight to protect human health.

5. References

- [1] Bai, C.-L., Liu, L.-Y., Guo, J.-L., Zeng, L.-X., & Guo, Y. (2022). Microplastics in take-out food: are we over taking it? *Environmental Research*, 215, 114390.
- [2] Bhavsar, P. S., Dongare, P. R., Shimada, Y., & Gore, A. H. (2023). A critical review on current challenges in the analysis of microplastics in food samples. *ACS Food Science & Technology*, 3(12), 2001–2017.
- [3] Canga, E. M., Gowen, A., & Xu, J. (2024). Assessing the inconsistency of microplastic measurements in foods and beverages. *Comprehensive Reviews in Food Science and Food Safety*, 23(2), e13315.
- [4] Eze, C. G., Nwankwo, C. E., Dey, S., Sundaramurthy, S., & Okeke, E. S. (2024). Food chain microplastics contamination and impact on human health: a review. *Environmental Chemistry Letters*, 22(4), 1889–1927.
- [5] Hee, Y. Y., Weston, K., & Suratman, S. (2022). The effect of storage conditions and washing on microplastic release from food and drink containers. *Food Packaging and Shelf Life*, 32, 100826.

[6] Heo, S. J., Moon, N., & Kim, J. H. (2025). A systematic review and quality assessment of estimated daily intake of microplastics through food. *Reviews on Environmental Health*, 40(2), 371–392.

[7] Horvatits, T., Tamminga, M., Liu, B., Sebode, M., Carambia, A., Fischer, L., Püschel, K., Huber, S., & Fischer, E. K. (2022). Microplastics detected in cirrhotic liver tissue. *EBioMedicine*, 82.

[8] Inam, Ö. (2025). Impact of microplastics on female reproductive health: insights from animal and human experimental studies: a systematic review. *Archives of Gynecology and Obstetrics*, 1–16.

[9] Jadhav, B., & Medyńska-Juraszek, A. (2024). Microplastic and nanoplastic in crops: possible adverse effects to crop production and contaminant transfer in the food chain. *Plants*, 13(17), 2526.

[10] Jahedi, F., Frad, N. J. H., Khaksar, M. A., Rashidi, P., Safdari, F., & Mansouri, Z. (2025). Nano and microplastics: unveiling their profound impact on endocrine health. *Toxicology Mechanisms and Methods*, 35(8), 865–893.

[11] Jayasinghe, C. V. L., Jayatilake, S., Rajapakse, H. U. K. D. Z., Kithmini, N. K. S., & Kulathunga, K. M. P. M. (2023). Microplastics in the Food Chain. *Microplastics in the Ecosphere: Air, Water, Soil, and Food*, 339–355.

[12] Joseph, A., Parveen, N., Ranjan, V. P., & Goel, S. (2023). Drinking hot beverages from paper cups: Lifetime intake of microplastics. *Chemosphere*, 317, 137844.

[13] Kadac-Czapska, K., Knez, E., & Grembecka, M. (2024). Food and human safety: the impact of microplastics. *Critical Reviews in Food Science and Nutrition*, 64(11), 3502–3521.

[14] La Porta, E., Exacoustos, O., Lugani, F., Angeletti, A., Chiarenza, D. S., Bigatti, C., Spinelli, S., Kajana, X., Garbarino, A., & Bruschi, M. (2023). Microplastics and kidneys: an update on the evidence for deposition of plastic microparticles in human organs, tissues and fluids and renal toxicity concern. *International Journal of Molecular Sciences*, 24(18), 14391.

[15] Lam, T. W. L., Chow, A. S. Y., & Fok, L. (2024). Human exposure to microplastics via the consumption of nonalcoholic beverages in various packaging materials: the case of Hong Kong. *Journal of Hazardous Materials*, 472, 134575.

[16] McHale, M. E., & Sheehan, K. L. (2024). Bioaccumulation, transfer, and impacts of microplastics in aquatic food chains. *Journal of Environmental Exposure Assessment*, 3(3), N-A.

[17] Mei, T., Wang, J., Xiao, X., Lv, J., Li, Q., Dai, H., Liu, X., & Pi, F. (2022). Identification and evaluation of microplastics from tea filter bags based on Raman imaging. *Foods*, 11(18), 2871.

[18] Ojo, A. B., Agbeye, O. D., Ogwa, T. O., Adedoyin, D., Rotimi, D. E., & Ojo, O. A. (2025). Implications of plastic-derived endocrine disruptors on human health. *Toxicology Mechanisms and Methods*, 1–25.

[19] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj*, 372.

[20] Prata, J. C. (2023). Microplastics and human health: Integrating pharmacokinetics. *Critical Reviews in Environmental Science and Technology*, 53(16), 1489–1511.

[21] Shukla, P., Srivastava, P., & Mishra, A. (2024). 8 Routes of Exposure (Inhalation, Ingestion, Dermal Contact). *Heavy Metal Contamination in the Environment: Health Impacts and Potential Remediation Approaches*, 114.

[22] Siddiqui, S. A., Singh, S., Bahmid, N. A., Shyu, D. J. H., Domínguez, R., Lorenzo, J. M., Pereira, J. A. M., & Câmara, J. S. (2023). Polystyrene microplastic particles in the food chain: characteristics and toxicity—a review. *Science of the Total Environment*, 892, 164531.

[23] Udovicki, B., Andjelkovic, M., Cirkovic-Velickovic, T., & Rajkovic, A. (2022). Microplastics in food: scoping review on health effects, occurrence, and human exposure. *International Journal of Food Contamination*, 9(1), 7.

[24] Unuofin, J. O., & Igwaran, A. (2023). Microplastics in seafood: Implications for food security, safety, and human health. *Journal of Sea Research*, 194, 102410.

[25] Vdovchenko, A., & Resmini, M. (2024). Mapping microplastics in humans: analysis of polymer types, and shapes in food and drinking water—a systematic review. *International Journal of Molecular Sciences*, 25(13), 7074.

[26] Vitali, C., Peters, R. J. B., Janssen, H.-G., & Nielen, M. W. F. (2023). Microplastics and nanoplastics in food, water, and beverages; part I. Occurrence. *TrAC Trends in Analytical Chemistry*, 159, 116670.

[27] Wang, X., Deng, K., Zhang, P., Chen, Q., Magnuson, J. T., Qiu, W., & Zhou, Y. (2024). Microplastic-mediated new mechanism of liver damage: From the perspective of the gut-liver axis. *Science of the Total Environment*, 919, 170962.

[28] Xu, J., Tang, M., & Xu, X. (2025). Microplastics in food: sources, distribution, health impacts, and regulation. *Journal of Food Composition and Analysis*, 107274.

[29] Yin, J., Ju, Y., Qian, H., Wang, J., Miao, X., Zhu, Y., Zhou, L., & Ye, L. (2022). Nanoplastics and microplastics may be damaging our livers. *Toxics*, 10(10), 586.

[30] Yousefi, A., Movahedian Attar, H., & Yousefi, Z. (2024). Investigating the release of microplastics from tea bags into tea drinks and human exposure assessment. *Environmental Health Engineering And Management Journal*, 11(3), 337–347.

[31] Zhang, X., Li, L., Zhang, Y., Liu, B., Wang, X., & Sun, L. (2025). Placental microplastics contamination and its impact on thyroid function in newborns. *Ecotoxicology and Environmental Safety*, 304, 119056.

